當我們有兩個很像的圖形時,要怎麼確定他們一樣呢?總不可能說他們「看起來一樣」吧!因為我們肉眼看到的不一定是準確的,有可能邊長差了0.01公分,那就不能說一樣啦!所以在本章節將會介紹如何用數學的方法說明兩個三角形一樣。在數學上,一模一樣的圖形我們有個術語叫做「全等」。
全等的一些術語
全等
若平面中兩個圖形能完全疊合,則稱這兩個圖形全等。如圖一, 與 能完全重合,因此這兩個三角形全等。
可是我們不可能每次都把兩個圖形疊起來,這樣太沒效率了!而且也有可能不準,於是我們介紹一些等等會用到的專有名詞。
對應頂點、對應邊以及對應角
若兩三角形全等,則疊在一起的頂點稱為對應頂點,疊合在一起的邊稱為對應邊,疊合在一起的角稱為對應角。如圖一,A與D是對應頂點; 與 是對應邊; 與 是對應角。
符號
在圖一中, 和 全等,我們會用 來表示,「 」唸成「全等於」。
全等的性質
判斷是否全等的方法
判斷全等的方法有五種,分別是SSS全等性質、SAS全等性質、ASA全等性質、AAS全等性質、RHS全等性質。這裡要注意「S」指的是「邊」,「A」指的是角,非常重要!!!因為光看名字就能知道前四個全等性質是什麼了。像是第一個SSS就是跟三個邊有關、SAS就是兩個邊與一個角、另外ASA與AAS都是兩個角與一個邊、差別在角與邊的相對關係,下面會詳細介紹。而RHS則是最特別,專門用在直角三角形上的。
SSS全等性質
剛剛說到SSS是跟三個邊有關,也就是說:當兩個三角形的三組對應邊相等時,可以確定兩個三角形全等。如圖二, 與 的三組對應邊相等,所以由SSS全等性質可知他們兩個全等。
可能有些人會問會問:「你怎麼知道他們對應角是不是一樣,會不會疊起來結果角度不一樣呀?」這就是這些全等性質厲害的地方!不用全部的角與邊都檢查過一遍,只要符合「某些條件」就好。而滿足SSS全等性質需要符合的條件就是三組對應邊相等。換句話說,只要三組對應邊相等就能說他們全等,不需要檢查對應角!
SAS全等性質
如法炮製上面所說的,SAS是兩邊跟一角,那麼只要兩個三角形中任意的兩組對應邊相等、一組對應角相等就能說他們兩個全等,對嗎?
很可惜這是有誤的。
眼尖的讀者可能已經發現了,為什麼他不寫ASS,要寫SAS呢?
因為邊和角有位置關係,SAS的意思是兩個邊中間夾了一個角,我們要知道兩組對應邊相等、以及這兩邊夾的角相等,才能說他們兩個全等。如圖三,我們知道兩組對應邊相等,以及兩對應邊夾的角相等,所以由SAS全等性質可知他們兩個全等。
至於有沒有ASS全等性質呢?答案是沒有,我們舉以下例子:
如果我們已知的相等角不是兩邊的夾角,那麼就無法確定全等。(如圖四,已知 (A)、 (S)、 (S) ,但是 與 卻非全等。)
ASA全等性質
看到這邊應該能很好猜出ASA指的是兩個三角形中兩組對應角及其夾邊,如果相等,則全等。
如圖五,已知 (A)、 (S)、 (A) ,則利用ASA全等性質可知
AAS全等性質
AAS指的是:若兩個三角形中兩組對應角及任一非夾邊(即任一個對應角的對邊)相等,兩個三角形就全等。
如圖六,已知 (A)、 (A)、 (S),則利用AAS全等性質可知
(註:下圖也可利用AAS全等性質來說明全等。)
RHS全等性質
當兩個直角三角形的斜邊和一股分別對應相等時,這兩個直角三角形就會全等。(註:「斜邊」是直角的對邊,「股」是直角的臨邊。)(注意!!不是有直角就是RHS,必須是斜邊與一股對應相等。如果是兩股對應相等,那就是SAS全等)
如圖七,已知 、 、 ,則利用RHS全等性質可知
光看邊與角的位置關係,其實很像ASS,不過前面說過沒有ASS全等性質,而RHS是ASS的特例,當相等的對應角為直角時,就能確保全等了。
總結
這篇介紹了全等以及判斷全等的方法,只要搭配上一篇:三角形內角與外角,就能做出許多變化的題目了。下面用一張圖來總結所有三角形全等性質。